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1  | INTRODUC TION

Quantifying abundance is central to many aspects of organismal bi-
ology, with two metrics being particularly important. The number of 
individuals (census size, N) informs a wide range of studies in basic 
and applied ecology, including population growth rates, competition 
and predation, immigration and emigration, behaviour, extinction 
risk, harvest management, and ecosystem function (Krebs,  2009). 
The evolutionary analogue of census size is effective population size 
(Ne), which determines rates of genetic drift, inbreeding and loss of 

genetic variability and mediates the effectiveness of natural selec-
tion (Charlesworth, 2009). Ne is usually smaller than N and sometimes 
much smaller (Frankham, 1995; Hauser & Carvalho, 2008; Palstra & 
Fraser, 2012), which means that some abundant populations could 
nevertheless experience rapid genetic change—a scenario that has 
been proposed for many marine species with huge populations and 
high fecundity (Hedgecock & Pudovkin, 2011).

Both key population-size metrics are challenging to estimate in 
nature. Many animal species are vagile, cryptic or rare, making de-
tection and enumeration difficult (Doak et al., 2005; Holmes, 2001; 
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Abstract
The last two decades have witnessed rapid developments and increasing interest in 
use of: (1) genetic methods to estimate effective population size (Ne) and (2) close-kin 
mark–recapture (CKMR) methods to estimate abundance based on the incidence of 
close relatives. Whereas Ne estimation methods have been applied to a wide range of 
taxa, all CKMR applications to date have been for aquatic species. These two fields 
of inquiry have developed largely independently, and this is unfortunate because 
deeper insights can be gained by joint evaluation of eco-evolutionary processes. In 
this synthesis, we use simple analytical models and simulated pedigree data to il-
lustrate how various factors (life-history traits; patterns of variation in individual re-
productive success; experimental design; stochasticity; marker type) can affect the 
performance of the estimators. We show that the Ne/N ratio and the probability of 
a close-kin match both depend on a vector of parental weights that specify relative 
probabilities that different individuals will produce offspring. Although age-specific 
vital rates are central to both methodologies, for CKMR they can potentially bias 
abundance estimates unless properly accounted for, whereas they represent the sig-
nals of genetic drift that Ne estimation methods depend upon. Coordinating Ne and 
CKMR estimation methods using the same or overlapping datasets would facilitate 
joint evaluation of both the ecological and evolutionary consequences of abundance.
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Seber, 1986; Taylor & Wade, 2000), and this is particularly true in the 
marine realm (“Managing fisheries is hard: it's like managing a forest, 
in which the trees are invisible and keep moving around;” J. Shepard; 
http://jgshe​pherd.com/thoug​hts/). Effective population size is de-
fined in terms of key demographic parameters (mean and variance 
in offspring number; Caballero,  1994; Crow & Denniston,  1988), 
but collecting these data often entails formidable logistical chal-
lenges, especially for long-lived species. As a consequence, indi-
rect genetic methods have been used to estimate Ne since the early 
1970s (Krimbas & Tsakas, 1971; Luikart et al., 2010). Similarly, mark–
recapture (MR) methods to estimate abundance have been a cor-
nerstone of wildlife ecology for the past half century (Jolly, 1965; 
Seber, 1982; Williams et al., 2002). For species that are difficult to 
capture and/or physically tag, naturally occurring genetic markers 
can be used to identify “recaptures” of the same individual from pas-
sively collected samples such as faeces or hair. For example, Kendall 
et al. (2008) used genotypes derived from hair samples to obtain a 
robust estimate of abundance of a threatened population of griz-
zly bears (Ursus arctos, Ursidae) in Glacier National Park, USA, and 
Buckworth et al. (2012) used “genetagging” to estimate harvest rate 
and catchability in Spanish mackerel (Scomberomorus commerson, 
Scombridae) from northern Australia.

More recently, researchers have begun to capitalize on the re-
alization that, if naturally occurring genetic marks are used, it is not 
necessary to capture individuals more than once, and the single 
“capture” can simply involve collecting DNA from a dead individual 
(or non-lethally from a living one). Close kin can also be used in a MR 
framework because individuals “mark” their relatives with shared 
genes (Skaug, 2001). The two kinship categories that have been used 
to date with close-kin mark–recapture (CKMR) are parent–offspring 
pairs (POPs) and siblings. Successful application of CKMR meth-
ods to a number of fish species (Bradford et al., 2018; Bravington 
et al., 2016, 2019; Hillary et al., 2018; Rawding et al., 2014; Ruzzante 
et  al.,  2019; Thomson et  al.,  2020), together with refinements in 
statistical methodology (Bravington et al., 2016; Conn et al., 2020; 
Skaug,  2017), has generated a great deal of interest in using 
this approach more broadly to study other taxa (e.g. Oleksiak & 
Rajora, 2020; Stewart et al., 2018). Basic principles of CKMR have 
also been used to place an upper bound on the pre-Columbian 
human population size in the Caribbean (Fernandes et al., 2020).

Considerable advances in the estimation of effective size have 
also been made over the past ~15 years. Prior to the mid-2000s, 
most genetic estimates of Ne used the temporal method (KIrimbas 
& Tsakas,  1971; Nei & Tajima,  1981), which requires at least two 
samples spaced in time. Most recent applications, however, 
use one of two single-sample methods (Palstra & Fraser,  2012): 
a bias-adjusted method based on linkage disequilibrium (LD; 
Waples & Do, 2008) or a method based on frequencies of siblings 
(Wang, 2009), and these methods have been widely applied to ma-
rine, freshwater and terrestrial species. Precision and bias of both 
single-sample methods have been extensively evaluated using sim-
ulated data (England et al., 2010; Gilbert & Whitlock, 2015; Tallmon 
et al., 2010; Wang, 2016; Waples & Do, 2010), as have effects of 

age-structure on LD estimates (Robinson & Moyer, 2013; Waples 
et al., 2014).

Although these recent advances in methods for estimating N and 
Ne have occurred simultaneously, they have also occurred largely in-
dependently. That is unfortunate, as CKMR estimates of abundance 
and related quantities depend on the same key demographic param-
eters that are needed to calculate Ne. Furthermore, genotypes for 
individuals sampled for CKMR also can be used to generate indirect 
genetic estimates of effective size, as was recently demonstrated 
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for southern bluefin tuna (Thunnus maccoyii, Scombridae; Waples 
et al., 2018). Recent work by Akita (2020a, 2020b) has made a good 
start in this direction for some specialized scenarios, and here we 
provide a more general treatment. Although POP-based CKMR 
has been successfully applied to semelparous species (Rawding 
et al., 2014), most species are iteroparous with overlapping genera-
tions, and that is our focus here.

Bravington, Skaug, et al. (2016) provide a brief yet authoritative 
introduction to the statistical underpinnings of CKMR, but not in 
a format that is very accessible to biologists interested in practical 
applications. Our synthesis here is motivated by the recognition 
that: (1) a full understanding of the evolutionary ecology of natu-
ral populations requires being able to quantify both abundance and 
effective size, and (2) as a consequence, it is important to maximize 
the synergistic effects of the two types of analyses. We begin by 
reviewing basic principles of population demography that are cen-
tral to both CKMR and Ne. We then consider how the same genetic 
data can be used both to estimate abundance and related quantities 
via CKMR and to estimate effective size using the popular single-
sample estimators. Next, we introduce some simple analytical tools 
that can be used to allow unbiased, closed-form CKMR estimation of 
abundance when the number of factors affecting the probability of 
a close-kin match is limited. Simulated data are then used to model 
these relatively simple scenarios, and results illustrate how some of 
the most common covariates (annual mortality; changes in fecundity 
with age; variance in reproductive success; non-random sampling; 
intermittent breeding) can affect bias and precision of the estimates 
and how these factors can be accounted for. We show that the Ne/N 
ratio and the probability of a close-kin match both depend on a vec-
tor describing the relative probabilities different individuals have of 
producing offspring. We also show that, although age-specific vital 
rates are central to both types of analyses, they have different con-
sequences for performance of CKMR estimates than they do for es-
timates of effective size.

2  | E VOLUTIONARY DEMOGR APHY

2.1 | Vital rates

General features of population demography that underpin models 
used here are described below (see Table 1 for notation and defini-
tions). The focal population is assumed to be isolated and iteroparous, 
with separate sexes. Time periods, assumed to be years, are discrete 
and age is indexed by x. Reproduction follows the seasonal birth-
pulse model (Caswell, 2001). At age x, individuals produce on average 
bx offspring and then survive to age x + 1 with probability sx. Both bx 
and sx can differ with age and sex. First reproduction occurs at age α 
(age at maturity) and maximum age is ω. Often, offspring are not enu-
merated until they reach a certain age, at which point they are con-
sidered “recruits.” We designate z as age at recruitment (1 ≤ z ≤ α) and 
scale bx to production of offspring that survive to age z. Cumulative 
survival from age 1 through age x is lx =

∏x−1

i=1
si , with lz = 1. Letting Nx 

TA B L E  1   Definitions and notations used in this study. Unless 
specified, variables refer to one time period or year

x Age (in years)

z Age at recruitment, when individuals are first 
inventoried

α Age at maturity

ω Maximum age

sx Probability of surviving from age x to age x + 1

lx Cumulative probability of surviving to age x

N1 Cohort size = number of offspring produced per 
time period that survive to age 1

Nx Number of individuals of age x alive at any given 
time; Nx =  lxN1

NT Total number of individuals of all ages alive at any 
given time; NT = ΣNx

NA (Nf, Nm) Number of adults (females, males) with age ≥ α 
alive at any given time

Ne Effective population size per generation

Nb Effective number of breeders in 1 year

N̂A, N̂e, N̂b
Estimates of adult census size and effective size

n Number of individuals sampled

Y Number of pairwise comparisons to search for 
close-kin matches

POP Parent–offspring pair

HSP Half-sibling pair

R Number of close-kin matches identified (RPOP or 
RHSP)

ki Number of offspring produced by parent i

μk Mean ki for all parents

�2
k

Variance of ki for all parents

bx Expected number of offspring for parents of age x

δi Difference between number of offspring for 
individual i and the mean for that age and sex 
(bx)

Bx Total expected number of offspring produced by 
parents of age x: Bx = Nxbx

�2
k(x)

Variance of k for adults of age x

ϕx Ratio of variance to mean reproductive success 
for adults of age x; ϕx = �2

k(x)
/bx

�2
k∙

Variance in lifetime number of offspring produced 
by the N1 individuals in a cohort

RO Reproductive output = number of offspring 
produced. ROi = ki for individual i

TRO Total reproductive output of all parents; 
E(TRO) =

∑�

x=�
Bx

RRO Relative reproductive output of an individual, 
compared to total reproductive output of all 
parents; RROi = ROi/TRO.

ERRO Expected relative reproductive output, based on 
a population's vital rates. For an individual of 
age x, ERRO = E(ROx)/E(TRO) = bx∕

∑�

x=�
Bx.

(Continues)
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be the number of individuals of age x alive at any given time, common 
definitions of census size include total abundance, NT = and 

∑�

x=1
Nx 

number of adults, NA = 
∑�

x=�
Nx. Except as noted we focus on NA.

2.2 | Reproduction

Both effective population size and CKMR depend on the population 
pedigree, which describes genealogical relationships among individ-
uals. Each year, the actual pedigree of a population is one realization 
of the stochastic process of reproduction and recombination. We use 
a generalized Wright–Fisher (WF) model of reproduction in which all 
adults have the potential to breed and produce offspring. Let ki be 
the reproductive output (RO = number of offspring) produced by the 
i th parent, and let μk and �2

k
 be the mean and variance of k across 

NA potential parents. In the classical WF model of random reproduc-
tive success, each adult has an equal and independent probability 
of being the parent of each offspring; this produces a multinomial 
distribution of offspring number, with E(�2

k
) = μk(NA-1)/NA (Crow & 

Denniston,  1988), which is closely approximated by the Poisson 
variance �2

k
  =  μk. The generalized model (Waples,  2020) differs in 

allowing adults to have unequal probabilities of parenting a given 
offspring. Define a vector of relative parental weights, w, where wi 
is the relative probability that adult i will be the parent of a given 
offspring. These relative weights can be converted to a vector of 
absolute (standardized) parental weights, W, where Wi = wi/Σwi and 
ΣWi = 1. If all weights are equal, we recover the original WF model, 
with E(�2

k
)  ≈  μk; in real populations, however, different individuals 

generally will have different parentage probabilities, which leads to 
overdispersed variance in reproductive success (�2

k
 > μk) relative to 

the random expectation. This in turn has important consequences 
for both Ne and CKMR.

Within a single year of reproduction, two components contrib-
ute to variation in individual weights: (1) an among-age effect, which 
arises from systematic changes in expected fecundity with age, 
and (2) a within-age effect, which reflects difference in expected 
reproductive success of individuals of the same age and sex. The 
among-age effect is determined by the bx vector from a life table. 
[As noted above, vital rates and other demographic parameters can 
vary by sex, but to reduce complexity of the notation we omit the 
subscripts for sex, with the understanding that all analyses involve 
individuals of a single sex, nominally female.] The within-age effect 

depends on the relationship between an individual's expected re-
productive success and the bx value that represents mean fecundity 
for its age. Thus, the relative parental weight for individual i of age 
x can be written as wi = bx + δi, where δi is the deviation from the 
age-specific mean. A positive δ means that the individual is expected 
to be above average for its age; a negative δ indicates the reverse. 
If all δi = 0, the within-age effect disappears, expected age-specific 
variance in reproductive success equals the mean (E[�2

k(x)
] ≈ bx), and 

individuals of the same age effectively behaves like a mini Wright–
Fisher population.

Empirical data for �2
k(x)

 are rarely published, but there are many 
reasons why individuals of the same age and sex might not have 
identical expectations of reproductive success. Some might have 
established breeding territories or acquired harems and others not; 
some might have phenotypes that favour them in sexual selection. 
In many species, fecundity depends more on size than age, in which 
case variation in wi for same-age individuals will be correlated with 
variance in size-at-age, leading to (E[�2

k(x)
] > bx (see Waples, Grewe, 

et  al.,  2018 for an example involving southern bluefin tuna). The 
magnitude of the within-age effect is quantified by the age-specific 
index ϕx = E(�2

k(x)
)/bx, where E(�2

k(x)
) and bx have been scaled to their 

expected values in a stable population (Waples,  2016; Waples 
et al., 2011).

Finally, in iteroparous species individual weights can vary 
across years, for two major reasons: (1) if bx varies with age and 
(2) if an individual's condition factor changes, which in many spe-
cies depends on whether it has reproduced in a recent year (see 
Section 3.2.2).

2.3 | Effective population size

2.3.1 | Demographic factors that affect Ne

Close-kin methods provide information about abundance in the re-
cent past, so contemporary (rather than long-term) effective size 
is our focus. Mean and variance in offspring number are the major 
factors that determine effective size. For seasonal reproduction in 
an age-structured species, the most relevant effective-size metric is 
the inbreeding effective number of breeders per year (Nb) because 
it relates directly to the annual number of adults (NA), which also is 
generally the focus of CKMR analyses. Nb can be calculated using the 
standard discrete-generation formula for inbreeding effective size 
(Caballero, 1994; Crow & Denniston, 1988):

With separate sexes, Nb can be calculated separately for males 
and females and an overall effective size obtained using Wright’s 
(1938) sex-ratio adjustment. For simplicity, we focus on census size 
and effective size for females (Nf, Nb(f)), but exactly analogous equa-
tions apply to males.

(1)Nb =
�kNA − 1

�k − 1 + �2
k
∕�k

wi Relative probability that adult i will be the parent 
of a given offspring

Wi Wi = wi/Σwi = ERROi = absolute probability that 
adult i will be the parent of a given offspring; 
ΣWi = 1

CV2
W

Squared coefficient of variation of the parental 
weights; CV2

W
 = �2

W
∕W

2, where �2
W

 = var(W). 
CV2

W
 is the same whether computed using w 

or W.

TA B L E  1   (Continued)
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Equation 1 is exact when based on realized population param-
eters; it can be reformulated as an expectation using the parental 
weights described above. Let CV2

W
 = �2

W
∕W

2 be the squared coeffi-
cient of variation (CV) of the individual weights (which is the same 
whether calculated using raw or standardized weights). Then, the 
expectation for the effective number of female breeders per year is 
just (Waples, 2020):

Although Nb relates directly to annual abundance estimated 
by CKMR, virtually all evolutionary theory depends on effective 
size per generation (Ne) rather than Nb per year. Calculating Ne in 
iteroparous species is complicated by the necessity of integrat-
ing information across multiple episodes of reproduction. All else 
being equal, Ne per generation is positively correlated with gen-
eration length and negatively correlated with lifetime variance in 
number of offspring, �2

k∙
 (Hill, 1972). The program AgeNe (Waples 

et al., 2011) calculates �2
k∙

 using the species’ age-specific vital rates 
(sx, bx, ϕx), under the assumptions (adopted from Hill,  1972 and 
Felsenstein,  1971) that vital rates and population size are con-
stant and survival and reproduction are independent over time. 
Demographic Ne also can be converted from an estimate of Nb 
based on the Nb/Ne ratio, which largely depends on 2–3 life-history 
traits (Waples et al., 2013, 2014).

2.3.2 | Genetic methods for estimating Ne

The sibship method developed by Wang (2009) considers three 
types of relationship in the one-generation pedigree: full sibling pairs 
(FSPs), half sibling pairs (HSPs) and unrelated (U), which nevertheless 
can be related through previous generations. In a random sample of 
n progeny, Y  =  n(n-1)/2  ≈  n2/2 pairwise comparisons are possible, 
and expected proportions of siblings are simple functions of Ne (from 
Wang, 2009, ignoring the term for selfing):

where QHS is the fraction of pairs that are half siblings (maternal and 
paternal HSPs combined) and QFS is the fraction that are full siblings. 
Substituting for Q = R/Y, where R is the number of sibling matches, and 
rearrangement leads to the estimator of effective size:

which has the number of pairwise comparisons in the numerator 
and the total number of sibling doses (one for each HSP and two for 
each FSP) in the denominator. When applied to offspring from a sin-
gle cohort, Equation 4 provides an estimate of Nb. Wang et al. (2010) 

described an extension of this sibship method to estimate Ne when 
generations overlap, but their model assumes that ϕx = 1 for each age 
and sex so is of somewhat limited general applicability.

Linkage disequilibrium (LD) quantifies associations of alleles at 
different gene loci. Random LD is generated every generation by 
mating among a finite number of parents, and that provides the 
basis for estimating effective size. Loci on the same chromosome 
(“linked”) provide information about historical Ne, so unlinked mark-
ers are most suitable for estimating contemporary Ne. For unlinked 
loci, Ne can be estimated from r2 (a measure of LD at pairs of loci) and 
sample size (n = number of individuals) (Hill, 1981):

The program LDNe (Waples & Do, 2008) adjusts for bias 
in Equation 5 caused by ignoring second-order terms in 1/n 
and 1/Ne. When applied to offspring from a single cohort, the 
LD method primarily reflects the signal from parental Nb, with 
some influence from Ne in previous generations (Waples,  2005; 
Waples et  al.,  2014). When applied to mixed-age samples, LDNe 
generally underestimates generational Ne by 10%–40% (Waples 
et  al.,  2014). Blower et  al.  (2019) developed simulation software 
for age-structured species that can help researchers interested in 
using the LD method to estimate effective size to determine sam-
ple sizes of individuals and loci that should produce desired levels 
of precision.

3  | MARK–REC APTURE METHODS

Traditional mark–recapture (MR) involves three elements:

•	 Capture and mark a number (n1) of individuals;
•	 Release them to mix with the general population;
•	 Collect a second sample of n2 individuals; those marked are the 

“recaptures” (R).

The fraction of original marks that are recaptured provides in-
formation about population abundance, but this metric also can 
be affected by a variety of other factors, including behavioural 
effects on sampling probabilities, tag loss, mortality, immigration/
emigration, and incomplete mixing between samples. Accordingly, 
a complex statistical framework for conducting MR analyses has 
been developed to account for these factors (Lebreton et al., 1992; 
Lindberg, 2012; Pollock, 2000). Commonly, MR analyses are con-
ducted using integrated population models (IPMs) that combine in-
formation from multiple datasets within a single pseudo-likelihood 
framework to estimate population abundance, trends and vital 
rates. IPMs have been widely used in fishery stock assessments for 
several decades (Fournier & Archibald, 1982; Punt et al., 2020) and 
more recently have been applied to wildlife management (Arnold 
et al., 2018).

(2)E(Nb(f)) ≈
Nf

1 + CV2
w

, so
Nb

Nf

≈
1

1 + CV2
w

(3)E[QHS + 2QFS] =
4

Ne

,

(4)N̂e =
4Y

RHSP + 2RFSP
,

(5)N̂e ≈
1

3
(

r2 −
1

n

) .
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In CKMR, close-kin matches are analogous to MR recoveries. 
Full siblings and parent–offspring pairs on average share half their 
genes, and half siblings share one quarter. As with MR, close-kin 
matches provide information about abundance but also are affected 
by a variety of other factors, which include (but are not limited to) 
age-specific survival and fecundity, spatial structure, sampling se-
lectivity, variance in offspring number, and correlations of indi-
vidual reproductive success over time. Most CKMR applications 
are complicated enough that they are best conducted by building 
a log-pseudo-likelihood framework, analogous to the IPMs used 
with MR, which incorporates outcomes of each pairwise compari-
son (Bravington, Grewe, et al., 2016; Bravington, Skaug, et al., 2016; 
Conn et al., 2020; Hillary et al., 2018).

Estimation frameworks for MR and CKMR can be quite compli-
cated and are largely opaque to all but the most dedicated aficio-
nados. In this synthesis, for heuristic purposes we take a different 
approach. First, by focusing on the simplest versions of the mod-
els, we illustrate fundamental similarities between MR and CKMR 
methods to estimate abundance and sibling-based methods to es-
timate effective size, and we show how to account for some com-
mon factors that can affect the estimates. Second, we suggest a 
new way to formulate the probability of a sibling match that can 
be useful in illustrating the influence of various covariates. Finally, 
we use simulated data to illustrate how factors like age-specific 
changes in vital rates, adult mortality, intermittent breeding, 
within-age variance in reproductive success, and experimental de-
sign can affect the performance of abundance and effective size 
estimators.

3.1 | Traditional mark–recapture estimation

In the simplest “cartoon” version of MR (if the probability of a recov-
ery is only influenced by population size), the estimate of abundance 
is simply N̂ = n1/P, where P = R/n2 is the fraction of the second sam-
ple that is marked. This leads to the abundance estimator.

where Y = n1n2 is the number of potential comparisons of individuals 
in the two samples, and the denominator is the number of matches.

3.2 | Close-kin mark–recapture estimation

In the cartoon version of CKMR, all parents are equivalent in terms 
of producing offspring and all Y pairwise comparisons to search for 
close kin are independent. Under these conditions, the probability 
that a random pair of individuals will produce a close-kin match is 
Pmatch = 1/Nf, and the expected number of matches is just the prod-
uct of the number of comparisons and the probability of success: 
E(R)  =  Pmatch*Y  =  Y/Nf. This leads to the naive estimator of adult 

abundance as N̂A = Y/R, which is identical in form to Equation 6 for 
MR and Equation 4 for sibship estimation of Ne.

More generally, the estimation of abundance using the incidence 
of close-kin matches is based on two basic principles:

A	 It is possible to specify the probability that a random pair of 
individuals will produce a close-kin match, and this probabil-
ity is inversely related to adult abundance, such that Pmatch = f1 
(1/N,Z) = f2(Z)/N, where f1 and f2 are functions and Z represents 
other covariates than also can affect close-kin probabilities.

B	 Pairwise comparisons to search for a match are independent, so 
the expected number of matches (R) is the product of the num-
ber of comparisons (Y) and the probability that each produces a 
match: E(R) = Y*Pmatch = Y*f2(Z)/N.

Principle B is not generally true in the strict sense, at least for 
POPs (if A is the mother of X, B cannot be); however, except in very 
small populations, sampling generally will be sparse enough that 
this assumption does not lead to appreciable errors (Bravington, 
Skaug, et al., 2016; see also Section S2.2 in Supporting Information). 
Principle A is reasonable if one has a flexible enough concept of 
“function.” If A and B hold to an acceptable degree, then rearrange-
ment produces:

Because Y and R are empirically determined, estimation of N is 
possible, provided one can define the function f2 so that all relevant 
covariates are accounted for. In certain cases, Equation 7 can be ex-
pressed as N̂= Y*C/R, i.e. the function f2 (Z) takes the simple form of 
a scalar conversion factor C, which can be calculated as a function of 
individual parental weights W (see Section 2.2) and other life-history 
parameters. Supporting Information S2 illustrates how to calculate C 
in a number of cases.

The core problem for CKMR, therefore, is to account for all 
other factors besides N that can affect the probability of close-kin 
matches. Among the most important covariates to consider in cal-
culating probabilities of a close-kin match are mortality, fecundity, 
sampling selectivity, temporal correlations, population structure, 
age, and sex. Unless the sex ratio is even and vital rates are the same 
in both sexes, the distribution of genetic “marks” passed on to their 
offspring by male and female parents will be different. In general, 
therefore, it is best to make sex-specific CKMR estimates, for which 
mtDNA can be useful (see Section 5.3).

3.2.1 | Parent–offspring pairs

Notwithstanding the difficulty in developing a general closed for-
mula for CKMR, one key metric is central to all CKMR analyses be-
cause it describes the probability that any given pair of individuals 
will produce a close-kin match: the relative reproductive output 

(6)N̂ = Y∕R,

(7)N̂ = Y ∗ f2(Z)∕R.
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(RROi) of different potential parents. For POPs, consider the prob-
ability [P(i → j)] that female i is the mother of offspring j. A general 
expression for this probability is (Bravington, Skaug, et al., 2016):

where ki,tj = ROi,tj is the number of offspring produced by female i in 
the year of j's birth and TROtj = Σki,tj is the total number of offspring 
by all females in that year. To estimate abundance, it is necessary to 
combine these probabilities across all sampled offspring and potential 
parents. POPs provide information about Nf in the year the offspring 
were born, so if samples are taken from multiple cohorts, a time series 
of abundance estimates can be obtained via age-structured population 
dynamics, as in many fish stock assessments (Quinn & Deriso, 1999).

Because actual reproductive output is rarely known, CKMR 
generally deals with expected relative reproductive output, E(RRO), 
based on expectations for different classes of parents (Bravington, 
Skaug, et al., 2016). This concept provides a direct link to the pa-
rental weighting scheme described previously: parental weights 
for a given individual i are calculated as Wi  =  E(ROi)/E(TRO), so 
E(RROi) = Wi.

Close-kin mark–recapture estimates based on POPs are greatly 
simplified by the fact that each offspring has exactly one mother. 
This means that variation in offspring number does not, by itself, 
affect expected number of matches (but it can if there is unmodelled 
correlation between reproductive output and sampling probability; 
see Section 5.2.1).

In the simplest POP-based examples, PPOP = 1/Nf, which would 
lead to an estimator of adult female census size, directly analogous 
to a standard Lincoln–Petersen MR estimate (Seber, 1982), as 

which has the same general form as Equations 4 and 6. Because E(RPOP ) 
is not sensitive to variation in offspring number, CKMR estimates based 
on POPs are not confounded by a signal related to Ne or Nb. However, 
as illustrated in Section 5.2.2, precision of POP-based estimates is in-
versely related to variation in reproductive success. If one or a few par-
ents dominate reproduction, the number of matches can vary widely 
depending on whether the prolific parent(s) are sampled.

3.2.2 | Siblings

Close-kin mark–recapture for siblings is considerably more com-
plicated because (1) parents are not observed directly and (2) the 
probability of a sibling match depends heavily on adult mortality 
and the extent to which reproductive output varies both within 
and across years. As demonstrated below, only cross-cohort sibling 
comparisons are suitable for estimating abundance. Because full sib-
lings from different cohorts will be rare in large, randomly mating 
populations, CKMR analyses generally focus on finding HSPs, and 

the probability that two offspring share a mother can be taken as 
a close approximation to the probability that they are a maternal 
HSP (MHSP). Our examples focus on MHSPs, but exactly equivalent 
equations apply to paternal HSPs.

Realistic CKMR applications based on siblings must consider two 
ordered time periods, 0 and t. For two samples of n1 and n2 offspring, 
Y = n1n2 across-sample comparisons are possible. A general formula 
for the probability that two randomly selected offspring, one from 
time 0 and one from time t, have the same female parent is (from 
equation 3.9 in Bravington, Skaug, et al., 2016):

It is necessary to sum across all possible females that could have 
been alive when potential siblings were born. Females that mature 
after time 0 cannot produce a sibling match for offspring born in 
time 0, so the summation is Equation 10 is taken over the Nf0 females 
that were sexually mature at time 0.

Equation 10 does not generally lead to a closed-form estimator 
of adult abundance, unless the species’ biology allows a number of 
simplifying assumptions (see Hillary et al., 2018 for an example in-
volving the white shark (Carcharodon carcharias, Lamnidae), which 
also required estimating adult mortality from the data). However, 
some heuristic insights into factors that influence PMHSP can be 
achieved if the equation is reformulated as follows (see Supporting 
Information Section S1 for details):

where the “*” in RROt* indicates that this vector only includes data for 
the subset of time-t females that were mature at time 0. It might ap-
pear from Equation 11 that the term Nf0 represents a signal of female 
population size at time 0, but that is misleading: the denominator of 
the population covariance is Nf0, so that signal cancels out. Instead, the 
term RROt∗ provides information about adult abundance at time t. Two 
general cases can be identified.

Case 1. Offspring are from the same cohort (t = 0)
If only a single time period is involved, RROi,0 = RROi,t = RROi, with 
RROi = 1/Nf. Noting that the covariance of a random variable with 
itself is its variance, Equation 11 becomes:

Equation 12 shows that, when offspring from the same cohort 
are compared, the probability of a sibling match increases as a func-
tion of the realized variance in offspring number. This variance is 
the primary signal for Nb, so siblings from the same cohort provide 
information related to effective size and not directly about adult 
abundance. For this reason, CKMR estimates using siblings generally 
attempt to exclude within-cohort comparisons (Bravington, Skaug, 
et al., 2016; Hillary et al., 2018; Thomson et al., 2020).

(8)P(i → j) = ki,tj∕TROtj = RROi ,

(9)N̂f =
Y

RPOP
,

(10)PMHSP =
∑Nf0

i=1

[

ki,0

TRO0

×
ki,t

TROt

]

=
∑Nf0

i=1
[RROi,0 × RROi,t].

(11)PMHSP = RROt∗ + Nf0[cov(RROi,0,RROi,t)],

(12)PMHSP = 1∕Nf + Nf [var(RROi)].
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Case 2. Offspring are from different cohorts (t ≠ 0)
In comparing offspring from different cohorts, it is always impor-
tant to account for adult mortality: if an adult female dies between 
times 0 and t, it cannot be a parent in time t, so RROi,t = 0. These 
null parents are included in the summation in Equation 10 and will 
reduce RROt∗ and therefore PMHSP unless this mortality is accounted 
for. Other common factors that affect sibling probabilities are con-
sidered below.

Changes in fecundity with age. All adults that survived to repro-
duce again at time t will be at least one year older. If bx changes with 
age (fecundity increases with age in many species, especially fish 
and other poikilotherms with indeterminate growth), this will affect 
RROt∗ (and perhaps the covariance term as well), unless this effect is 
accounted for.

Persistent individual differences. If within-age individual devia-
tions from mean fecundity (the δi defined in Section 2.2) are non-zero 
and positively correlated over time, such that some individuals are 
consistently above or below average at producing offspring, this will 
(all else being equal) lead to positive cov(RROi,0,RROi,t) and a higher 
proportion of siblings, as well as reduced Ne (Lee et al., 2011, 2020). 
Body size is one factor that can easily lead to positive temporal cor-
relations in reproductive success. Fecundity often depends on size 
more directly than on age, and an individual that is large (or small) for 
its age at time 1 is also likely to differ in a similar way in subsequent 
years. Whether an individual is “sexy” or has secured a territory are 
other factors that could produce persistent individual differences.

Skip breeding. Skip breeding leads to a complex pattern of 
cov(RROi,0,RROi,t) that can vary both in magnitude and in sign, de-
pending on the species’ life history and the time interval for cross-
cohort comparisons (Figure 1). For example, consider a species for 
which females generally skip t years after reproducing before doing 
so again. Comparisons of offspring born <t years apart will produce 
few if any sibling matches, while comparisons exactly t years apart 
will produce sibling matches at a rate determined not by female pop-
ulation size as a whole, but by the ≈Nf /t females that actually repro-
duce each year. It should be possible to develop an adjustment for 
skip breeding using the vector (θt) of the probability that an individ-
ual will reproduce in the current year, given that it last reproduced 
t years before (Shaw & Levin, 2013). For female loggerhead turtles 
(Caretta caretta, Cheloniidae), θt = [0.025, 0.443, 0.634, 0.743, 1] for 
t  =  1,5 (Waples & Antao,  2014), indicating a substantial effect of 
prior reproduction lasting 4 years. With adequate data, CKMR can 
estimate parameters like θt based on age-gap patterns in the data 
(see Section 6.1).

4  | SPATIAL STRUC TURE AND SAMPLING

Spatial structure, where reproduction and/or sampling is concen-
trated in certain geographic locations, will not bias CKMR estimates if 
either of the following conditions are met (Conn et al., 2020): (1) off-
spring (sibling analyses) or parents and offspring (POPs analyses) mix 
thoroughly before sampling occurs; or (2) sampling is equiprobable, 

meaning that every individual has an equal chance of being sampled. 
To illustrate the first criterion, if reproduction is panmictic in area A, 
where adults are sampled, and offspring randomly migrate to areas 
B and C, sampling in just one of those areas still produces a random 
sample of all offspring (see Bravington, Grewe, et al., 2016 for an em-
pirical example involving southern bluefin tuna). If the second crite-
rion (and other CKMR assumptions) is met, abundance estimates will 
reflect the total number of adults. If spatially restricted reproduction 
is persistent and there are independent or semi-independent popu-
lations or stocks for which separate abundance estimates are de-
sired, the naive CKMR estimate of a single overall abundance might 

F I G U R E  1   Schematic diagram showing possible effects of 
skip breeding on CKMR estimates. Top: If non-breeders are not 
sampled, POPs will provide an abundance estimate only for the 
breeding population. Bottom: A multiyear study for a population 
in which most adults alternate between being breeders and 
non-breeders; the thin dashed arrows indicate that a fraction of 
adults breed in consecutive years. Two consecutive years of POPs 
collections will sample the entire adult population. Few if any 
HSPs will be found for pairs of individuals separated in age by odd 
numbers of years (sampling scheme A), while the number of HSPs 
for comparisons of individuals born an even number of years apart 
(sampling scheme B) will reflect the number of breeders per year 
more than the adult census size, NA. Genetic methods that estimate 
Nb based on single-cohort samples also would produce an estimate 
related to the number of actual breeders each year, rather than the 
total number of adults
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be unsatisfactory. If estimates are available for key parameters de-
scribing the degree of reproductive connectivity and distributional 
overlap, it might be possible to develop area-specific abundance es-
timates (Davies et al., 2017). Fortunately, if population stratification 
is strong enough to substantially affect CKMR estimates, this should 
be apparent from even a fairly coarse preliminary sampling design 
(Conn et al., 2020). Furthermore, spatial patterns in distribution of 
close-kin can provide insights into population subdivision and con-
nectivity (Feutry et al., 2017; Jasper et al., 2021; Økland et al., 2009; 
Palsbøll et al., 2010; Wang, 2014).

In general, the most important proviso regarding sampling is 
that whether an individual is sampled should have no effect on the 
probability that one of its close kin is also sampled. If this criterion 
is satisfied, conditioned on covariates associated with the sampled 
individuals, then expected values of RRO are multiplicative, which 
makes the CKMR analyses tractable. Joint sampling of close kin in 
the same spatiotemporal stratum at higher frequencies than would 
occur by chance will increase the probability of close-kin matches; 
this potential source of bias can be reduced by appropriate filter-
ing of the data, as Thomson et al., (2020) did with the school shark 
(Galeorhinus galeus, Triakidae).

Sampling considerations for single-sample genetic estimators are 
similar to those for sib-based CKMR, except that non-random col-
lection of siblings can be difficult to avoid when sampling within co-
horts. Without independent information, it is not possible to reliably 
compensate for a non-random sample by excluding some or all puta-
tive siblings, although some approaches can reduce bias (Waples & 

Anderson, 2017). Biases to genetic estimates of Nb from undetected 
population structure should be similar to those for CKMR-based es-
timates of abundance. If the focal population is part of a metapopu-
lation but sampling is local, the LD method primarily estimates local 
Nb unless migration is very high in genetic terms (>5%–10%; Waples 
& England, 2011; Gilbert & Whitlock, 2015).

5  | WORKED E X AMPLES

5.1 | Simulations

We simulated demographic and genetic data (using the software 
CKMRPop, Anderson, 2021) to illustrate effects of some common 
factors on CKMR and Ne estimators. Scenarios modelled here were 
simple enough that the function f2 from Equation 7 could be speci-
fied and CKMR estimates could be made using that closed-form 
equation. Below we briefly describe the model and summarize the 
main results and conclusions. More details about the simulations 
and explanations for all the calculations can be found in Supporting 
Information.

The core scenario involved a single closed population with the 
following features (notation follows that introduced in Section 2 and 
defined in Table 1):

•	 age at maturity (α) = 3
•	 maximum age (ω) = 10

TA B L E  2   Life table for a hypothetical species used in the simulations

Age (x) sx lx Nx

Constant fecundity Increasing fecundity

bx Nxbx ERRO bx Nxbx ERRO

1 0.7 1.000 1,000 0 0 0 0 0 0

2 0.7 0.700 700 0 0 0 0 0 0

3 0.7 0.490 490 1 490 0.00065 3 1,470 0.00040

4 0.7 0.343 343 1 343 0.00065 4 1,372 0.00053

5 0.7 0.240 240 1 240 0.00065 5 1,200 0.00067

6 0.7 0.168 168 1 168 0.00065 6 1,008 0.00081

7 0.7 0.118 118 1 118 0.00065 7 826 0.00094

8 0.7 0.082 82 1 82 0.00065 8 656 0.00107

9 0.7 0.058 58 1 58 0.00065 9 522 0.00121

10 0 0.040 40 1 40 0.00065 10 400 0.00134

Total 1+ 
(NT)

3,239 TRO 1539 TRO 7,454

Adults 3+ 
(NA)

1539

Note: sx is the probability of surviving from age x to x + 1, lx is cumulative survival through age x, and bx is relative fecundity of an individual of age x. 
This example assumes an equal sex ratio and the same vital rates in males and females, but data are shown for only one sex (nominally females). The 
hypothetical population produces 2000 offspring in each cohort, of which N1 = 1,000 are females. Expected numbers in successive age classes are 
defined by Nx = lxN1. Two fecundity scenarios are considered: constant fecundity and fecundity increasing with age. TRO = ΣNxbx is total reproductive 
output of the population in one time period, in the same relative units as bx, and ERRO is the expected relative reproductive output of an individual 
of the specified age (all individuals of the same age are assumed to have the same ERRO). ERRO is identical to the standardized parental weights (W) 
described in Section 2.2.
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•	 equal primary sex ratio and same vital rates in males and females
•	 annual probability of survival was constant at sx = 0.7
•	 relative fecundity was either constant with age (bx  =  1 for all 

adults) or proportional to age (bx = x for all adults)
•	 The NA adults produced a constant number of yearling offspring 

per year (N1 = cohort size = 2000)
•	 number of offspring produced by individuals of the same age and sex 

was drawn from a negative binomial distribution with either Poisson 
(~random) variance (ϕ = 1) or overdispersed variance (ϕ = 10).

The life table for this core population is shown in Table 2. With 
constant cohort size and random survival, total abundance each year 
averages 3,239 individuals of each sex (NT = 6,478), of which 3,400 
are juveniles and NA  =  3,078 are adults (hence Nf  =  Nm  =  1,539). 
Table 3 defines six Scenarios (A–F) that represent variations on this 

life table for which we simulated data, in addition to some other sce-
narios described below.

CKMRPop does not do kin-finding based on genetic data. 
Because we wanted to focus on bias and precision related to experi-
mental design and the species’ life history, we used the true pedigree 
recorded by CKMRPop to identify POPs and siblings, which is equiv-
alent to assuming that all close-kin matches were made without error.

5.2 | Results

Bias can arise in CKMR estimates when the model does not fully ac-
count for all factors that affect the probability of a close-kin match 
(Pmatch). In the examples considered here, we accounted for potential 
biases by calculating a conversion factor C that is the ratio of the 

TA B L E  3   Comparison of expected and estimated parameters for six scenarios evaluated in the simulations

Scenario A B C D E F

N1 2000 2000 2000 2000 2000 20,000

Fecundity Constant Constant Increasing Increasing Constant Constant

Adult sampling Random Random Random Selective Randoma Random

Φ 1 10 1 1 1 1

NA 3,078 3,078 3,078 3,078 3,078 30,783

POPs noff 300 300 300 300 300 600

nparents 300 300 300 300 300 600

Exp(R) 58.5 58.5 58.5 67.5 27.9 23.4

Obs(R) 59.2 59.2 58.9 66.9 27.8 23.1

C 1.00 1.00 1.00 1.15 0.48 1.00

N̂A raw 3,072 3,182 3,135 2,802 6,722 32,556

N̂A(adj)
3,072 3,182 3,135 3,094 3,201 32,556

Siblings noff 100 100 100 - - 300

Exp(R) 63.7 63.7 84.3 - - 57.4

Obs(R) 63.8 67.7 82.4 - - 58.8

C 0.4905 0.4905 0.648 0.4905

N̂A raw 6,504 6,577 4,854 - - 61,348

N̂A(adj)
3,122 3,157 3,145 - - 29,447

True Nb 3,078 388 2,665 - - 30,783

N̂b
3,074 390 2,658 - - 28,805

Note: Bold entries show changes from respective values in Scenario A.
Except for scenario F, for which cohort size and adult N are 10 times as large, all scenarios have a constant cohort size of N1 = 2000 newborns, which 
produces adult NA = 3,078 (1,539 of each sex; Table 2). noff and nparents are annual sample sizes of offspring and potential parents, respectively. In 
selective sampling (Scenario D), the relative probability that an adult was sampled was equal to its expected fecundity (bx); in other scenarios, adult 
sampling was random. Samples of potential parents were drawn only from mature (age 3+) females except in Scenario E, where the sample was 
collected from the entire population. Sampling of adults has no effect on siblings, so results for Scenarios D and E are only shown for POPs. Exp(R) 
and Obs(R) are expected and observed numbers of close-kin matches, respectively, and the conversion factor C is the constant that relates the 
true probability of a match to the naive value 1/Nf (see Eq. S3). For sibship analyses there is a separate C value for each age gap between offspring, 
and values shown here are weighted mean Cvalues applicable to the total number of comparisons. Raw (naïve) N̂A is the estimate from Equation 7, 
assuming all Pmatch = 1/Nf; the adjusted estimator N̂A(adj) accounts for effects of mortality, changes in fecundity with age, and sampling using the 
conversion factor C.
aIn Scenario E, sampling of potential parents was random but with respect to the entire population rather than just mature adults.



     |  11WAPLES and FEUTRY

true Pmatch to the naïve value of 1/Nf. This conversion factor thus 
plays the role of the function f2 in Equation  7. The value of C for 
any given application is determined by the focal species’ vital rates 
and the experimental design, but it is independent of population size 
(see Supporting Information for details about calculation of C). C can 
then be used to accurately predict the expected number of close-kin 
matches and to obtain an unbiased estimate of abundance.

5.2.1 | Bias

Parent–offspring pairs
In our simulations, POP-based estimates of adult N were unbi-
ased using the naive model that assumes PPOP = 1/Nf, (Table 3 and 
Figure 2) except when:

1.	 Fecundity and probability of being sampled both increased with 
age; or

2.	 The sample of potential adults also included immature individuals.

In situation (1), joint effects of age-specific changes in selectivity 
and fecundity increased the number of POP matches beyond the num-
ber expected under the naive model, leading to C  >  1 (calculations 
shown in Table S1). In situation (2), dilution of the “adult” sample by 
inclusion of juveniles that could not produce offspring reduced the 
fraction of comparisons that produced a POP match, leading to C < 1. 
With equiprobable sampling of the entire population, this produced 
an unbiased estimate of overall abundance (NT) but would represent a 
bias if the goal were to estimate NA. After adjusting PPOP by the factor 
C, N̂A(adj) for these two scenarios was unbiased as well (Table 3).

Siblings
Because sibling-based estimates of abundance depend on cross-
cohort comparisons of offspring to search for a shared parent, in 
general one of the following conditions must be met for CKMR to 
be feasible: (a) mixed-age samples can be aged precisely and sorted 
into cohorts or (b) a series of samples from individual cohorts is col-
lected over time. Our simulations followed the second approach; in 
each replicate for sibling analyses, we collected samples of yearlings 
in five consecutive years, which allowed us to compare cohorts born 
1–4 years apart (the “age gap”). Even when all adults are equally likely 
to produce offspring, it cannot be the case that the probability of a 
sibling match is 1/Nf, because some parents will die and cannot be the 
parent of an offspring born in a later year. If all adults are otherwise 
equally likely to produce offspring, the conversion factor C can be cal-
culated from cumulative survival rates over time. If fecundity changes 
with age, the bias adjustment is more complicated but can be done 
using Equation 10 to calculate PMHSP based on the population's vital 
rates (as illustrated in Table S2). By making these adjustments, unbi-
ased abundance estimates can be obtained for a wide range of sce-
narios, for very small to very large populations (Table 3 and Figure S1).

Figure 3 illustrates the effects of intermittent breeding on the 
number of sibling matches as a function of the age gap. Allowing a 
random subset of adults to reproduce every year does not affect 
the total number of cross-cohort comparisons (columns “Total 1–4”), 
but it does reduce Nb per year and hence increases the number of 
within-cohort siblings. In scenarios where the probability that the 
same individual reproduces in consecutive years is low or 0 (as in 
the “Alternate” scenario in Figure 3), the expected number of sibling 

F I G U R E  2   POP results for simulated scenarios A-E from Table 2. 
Symbols show medians of N̂A across 500 replicate simulated 
samples; vertical lines show empirical confidence intervals (CIs) 
defined by the upper 95% and lower 5% quantiles. All scenarios 
have the same true adult NA = 3,078 (dotted line). Estimated NA (N̂A

; Y axis) is the raw estimate based on the observed number of POPs 
and assuming that PPOP = 1/Nf; all estimates adjusted using the 
conversion factor C to account for deviations from this assumption 
were close to true NA (see Table 3). Note the log scale on the Y axis

F I G U R E  3   Mean numbers of siblings recorded in the simulations 
as a function of the age gap between offspring, for scenarios that 
involved intermittent breeding. The last column shows the total 
number of cross-cohort siblings found (age gaps 1–4). The scenario 
labelled “Breeders: All” (black bars) is scenario A from Table 3. In 
the “50%” and “10%” scenarios (white and grey bars), only a random 
half or 10% of all adults were allowed to reproduce each year; in 
the “Alternate” scenario (cross-hatched bars) only individuals aged 
3, 5, 7, or 9 were allowed to reproduce, so every surviving parent 
skipped one year after reproduction. Note the log scale on the Y 
axis
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matches can vary dramatically depending on the age gap—a factor 
that must be considered to obtain an unbiased estimate of abun-
dance. Fortunately, the empirical distribution of age gaps between 
sibling matches (or between POP matches in a long-term POP study; 
see Bravington, Grewe, et al., 2016) can be used to estimate the na-
ture and magnitude of skip breeding.

5.2.2 | Precision

Close-kin mark–recapture methods are categorical (each pairwise 
comparison is either a POP/HSP or not), so only integer numbers 
of close-kin matches are possible (Figure 4). [In theory, probabilis-
tic kin assignments could be used, as they commonly are for calling 
genotypes in genomics-scale datasets (Korneliussen et  al.,  2014), 
but this would cause hideously daunting consequences for CKMR 
likelihood calculation, for little gain in demographic information—M. 
Bravington, pers com. January 2021.] Precision of CKMR estimates 
is primarily determined by two key parameters: mean and variance in 
number of close-kin matches (R).

A crude approximation to a minimum CV for N̂A from MR or 
CKMR is 1/√R (Bravington, Skaug, et al., 2016), in which case R = 50 
would translate into a CV of about 15%. This rule of thumb assumes 
a Poisson variance in R, implying that var(R) ≈ 50. In our simulations, 

we monitored var(R) and compared it to the Poisson expectation. 
Also, because of the inverse relationship between N̂A and R, N̂A is 
skewed high and is infinitely large when no recoveries are found. 
This same issue applies to Wang's sibship method (see Equation 4), 
and for this reason it is common for evaluations of precision of ef-
fective size estimators to focus on the distribution of 1/N̂e rather 
than N̂e and to use the harmonic mean rather than arithmetic 
mean as a measure of central tendency (e.g. Wang, 2009; Waples 
& Do, 2010). Accordingly, here we calculate empirical CVs of 1/N̂A 
and 1/N̂b based on variances across replicates, as well as medians or 
harmonic means.

Parent–offspring pairs
We found that var(R) among POP replicates was generally close to 
or slightly smaller than the Poisson variance (Figure S2a), which im-
plies that in the simplest forms of POP-based CKMR the above rule 

F I G U R E  4   Precision in estimating adult census size (NA) using 
CKMR analyses based on the number of half sibling pairs (HSPs). 
Data are for Scenario A from Table 3, with true NA = 3,078 
(black dotted line) and 89 offspring sampled from each of 5 
consecutive cohorts. Black triangles are possible estimates of NA 
using R = integer total numbers of HSPs (maternal and paternal 
combined) in Equation 7, with the mean conversion factor 
(C = 0.4905) playing the role of the function f2. This level of 
sampling produces an average of R = 50 sibling matches which, if 
var(R) were Poisson, would produce a standard error of R of about 
7 and a 95% confidence interval (CI) around R of [36–64] (thick 
dashed line); this in turn would (following arrows) lead to a 95% 
CI of N̂A = [2400–4240]. In the simulations, actual var(R) among 
replicates was slightly higher than the Poisson expectation (1.13 
times the mean; Figure S2b), which would lead to a slightly wider CI, 
but the empirical CV(1/N̂A ) was still close to 0.15 (Figure 5c)

F I G U R E  5   Relationships between annual sample size (n), adult 
abundance (NA), precision and cost. In panels a and b, the red line 
represents sample sizes that are expected to produce a total of 
50 cross-cohort half siblings, assuming samples are collected for 5 
consecutive years. Panel c shows results of simulations based on 
two reproductive-skew variations described in Table 3: Scenario A 
(ϕ = 1, solid red line and symbols) and Scenario B (ϕ = 10, dotted 
blue line and symbols). Cohort sizes were varied to produce adult 
abundances that ranged more than three orders of magnitude, and 
corresponding sample sizes were adjusted as shown in panel (lower 
case) a to produce a constant expected number of 50 total HSPs. In 
panel d, the green dashed line shows approximate total cost (across 
all 5 years) for SNP discovery and genotyping for sample sizes 
expected to produce 50 HSPs. Vertical axes: a) annual sample size, 
n; b) n as a fraction of NA; c) CV of 1∕N̂A; d) left, n; right, total cost 
in thousands of USD. Note the log scale on the X axis, and on the Y 
axes in panels a and d
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of thumb is fairly accurate. An exception occurred for Scenario B, 
which had substantially overdispersed variance in reproductive suc-
cess (ϕ = 10); in this case, the large within-age effect on �2

k
 caused 

var(R) to be over twice as large as the mean (Figure S2a), which also 
considerably widened the distribution of N̂A (Figure 2).

Siblings
For the same scenarios from Table  3, the ratio var(R)/mean(R) 
was generally slightly higher for sibling analyses than for POPs 
(Figure  S2a). For scenarios B (ϕ  =  10) and C (fecundity increasing 
with age), var(R)/mean(R) for siblings was >1 (2.22 and 1.23, respec-
tively), which presumably reflected the fact that both of these sce-
narios included unequal parental weights.

For a given life-history scenario, the ratio var(R)/mean(R) (and 
hence precision) is sensitive to adult abundance. As illustrated in 
Figure  5 (Panels A and B), although larger samples of individuals 
are needed from larger populations to produce a fixed number of 
close-kin matches, required sample sizes increase more slowly than 
adult abundance, so in very large populations only a small fraction 
of the population has to be sampled each year. This occurs because 
increasing the sample size by a factor X increases the number of pos-
sible comparisons to search for siblings by the factor X2. In theory, 
the effects of overdispersed variance and other factors that cause 
non-independence of the data should attenuate as sampling be-
comes sparse compared to overall abundance (Bravington, Skaug, 
et al., 2016).

Our simulations of populations with large NA produced results 
consistent with this theory. For the smallest populations we mod-
elled (NA = 770), var(R)/mean(R) was somewhat elevated (1.26) from 
the Poisson expectation of 1.0 even for ϕ = 1, but the variance rap-
idly dropped to at or below the Poisson variance as population size 
increased (Figure S2b). With moderately high within-age variance in 

reproductive success (ϕ = 10), departures from the Poisson expecta-
tion are greater and the rate of attenuation lower, but even so var(R)/
mean(R) dropped to ~1.0 for adult abundances >105 (Figure S2b). All 
of these scenarios were designed to produce an average of 50 total 
half-sibling matches, and those that achieved a var(R)/mean(R) ratio 
close to 1.0 produced CVs of 1/N̂A that were close to the expected 
0.15 (Figure 5c).

For two scenarios (A and B from Table 3), we compared CKMR 
precision for estimating NA with precision to estimate Nb using 
Wang's sibship method, as a function of the number of consecu-
tive years of samples that were used (2–5). In Scenario A, ϕ  =  1 
and fecundity was constant with age, so NA  =  Nb  =  3,078; pre-
cision was higher for N̂b with only 2 years of data, but for longer 
studies precision of N̂A was higher (Figure  6). This latter result 
occurred because the total number of pairwise comparisons in-
creases faster for cross-cohort comparisons used in CKMR than it 
does for within-cohort comparisons used to estimate Nb. Results 
for Scenario B were quite different: with ϕ = 10, true Nb (388) is 
greatly reduced compared to adult N (3,078), and this produces a 
stronger drift signal that is relatively easier to estimate precisely. 
Conversely, the high variance in reproductive success substantially 
increased variability in the number of cross-cohort sibling matches. 
As a consequence, CV(1/N̂b ) was four times as large as CV(1/N̂b) for 
2 years of samples and still more than twice as large with 5 years of 
samples (Figure 6). These results illustrate an important difference 
between CKMR and estimators of effective size: overdispersed 
variance in reproductive success reduces precision of N̂A but in-
creases precision of N̂b and N̂e.

Close-kin mark–recapture and Wang's sibship method share a 
limitation in that once enough genetic markers are used to reliably 
identify all close kin, additional markers cannot further increase 
precision, unless doing so allows more distant kin relationships to 
be integrated into the analysis. The LD method does not suffer 
from this limitation; in fact, the number of pairs of loci that can be 
used to compute mean r2 increases with the square of the number 
of loci, so in theory precision to estimate Ne and Nb could become 
arbitrarily large with genomics-scale datasets. In practice, limited 
recombination within chromosomes and lack of independence of 
overlapping pairs of the same loci limit the information content 
in large genetic datasets (Thompson,  2013; Waples et  al.,  2021). 
Despite these limitations, if more than roughly 500–2,000 SNPs are 
used, precision of the LD method for estimating Nb will generally 
exceed the maximum possible precision of Wang's sibship method, 
which occurs when all sibling relationships are correctly identified 
(Waples, 2021).

5.3 | Costs

Data shown in Figure 5 provide an opportunity to illustrate the re-
lationship between experimental design and genotyping costs (see 
also Table S5 for more details). The following parameters apply to 
prices discussed below:

F I G U R E  6   Precision for using close-kin sibling data to estimate 
adult NA (black lines) or Nb (grey lines) as a function of the number 
of consecutive years during which samples are collected. CV (Y 
axis) is the coefficient of variation of 1∕N̂A or 1/N̂b, using data for 
all years. Fecundity was constant with age and true NA was 3,078. 
Results apply to Scenario A (ϕ = 1, solid lines; true Nb = 3,078) or 
Scenario B (ϕ = 10, dashed and dotted lines; true Nb = 388)
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•	 Costs are in $USD and apply to SNP discovery and genotyping, 
but not DNA extraction, using DArTseq/DArTcap technology 
(Jaccoud et al., 2001) as implemented in Feutry et al. (2020);

•	 Costs include discovering and genotyping 1,500+ high-quality 
SNPs (low error rate, high call rate and MAF > 0.1);

•	 Costs assume 94 samples per plate, with 1 positive and 1 negative 
control;

•	 Costs include a fixed component for SNP discovery (1 plate of 
DArTseq @ $3,800) + a fixed component for DArTcap SNP panel 
synthesis + $11.4/individual);

•	 Costs assume a species with at least moderate levels of genetic di-
versity; species with low diversity might require more sequencing 
at extra cost for SNP discovery.

Estimates are based on several CKMR projects conducted by 
CSIRO Hobart, using methods described in Feutry et  al.  (2020), 
which in our experience is sufficient for accurate inference of POPs 
and siblings in species with NA up to ~2 × 106. These costs represent 
only one possible commercial option, but a proven one that is glob-
ally available. Other methodologies exist, some laboratories might 
be able to save money by performing analyses in-house, and costs 
are likely to keep dropping in the future. Nevertheless, estimates 
shown in Figure 5d can serve as a useful reference point (and upper 
limit) for planning and experimental design.

Data shown in Figure  5d are total costs for an experimental 
design that involves five consecutive years of samples at a level 
designed to produce about 50 total HSPs and CV(1/N̂A) of about 
0.15. Costs rise more slowly than population size for two reasons: 
(a) the fraction of the population that has to be sampled to pro-
duce a fixed level of precision declines as NA increases (Figure 5b) 
and (b) in large studies, fixed costs of SNP discovery become rela-
tively less important. Figures above do not include sampling, costs 
for which can be substantial but will vary widely across applica-
tions. On the other hand, resulting genotypes should be suitable 
for performing all of the analyses discussed in this paper, including 
identification of POPs and siblings and calculation of mean r2 for 
the LD analyses.

Also not included are costs for mtDNA analysis to estimate the 
fractions of HSPs that are of maternal and paternal origin, which 
can be modelled using haplotype frequencies (Bravington, Skaug, 
et al., 2016; Thomson et al., 2020). Costs are modest (~5K$ per 50 
HSPs) because only the close-kin matches have to be tested but might 
be relatively important for small studies. For POPs, parental sex is 
generally determined morphologically or using sex-specific markers.

6  | DISCUSSION

Close-kin mark–recapture estimates of abundance and genetic 
methods to estimate effective population size share a dependence 
on core features of population demography: means and variances 
of age-specific vital rates and covariances in realized reproduc-
tive success over time. Effective size can be predicted based on a 

vector of parental weights, W, that is mathematically equivalent to 
the expected-relative-reproductive-success (ERRO) concept that 
underpins CKMR. A CKMR study will generate some or all of the 
demographic data needed to calculate effective size directly, and 
genotypes for the sampled individuals provide an opportunity to 
apply indirect genetic methods for estimating Ne or Nb. Nevertheless, 
demographic parameters and other covariates influence CKMR and 
effective size estimators in different ways.

6.1 | CKMR

As illustrated in Equation 8 (for POPs) and 10 (for siblings), the prob-
ability of a close-kin match is inversely proportional to total repro-
ductive output (TRO) of the population. TRO is closely related to 
spawning stock biomass, which typically is an important metric in 
fisheries stock assessments. In many other applications, however, 
adult abundance is the parameter of primary interest, in which case 
it is necessary to disentangle the relationship between TRO and the 
NA adults responsible for that reproductive output. For some simple 
scenarios, this can be done using Equation 7 and a scalar conversion 
factor C, calculated as described in detail in Supporting Information 
S2.2. This approach was adopted for analysing the simulated data, 
which illustrated predictable effects of some common factors on 
performance of CKMR and effective size estimators. Key results that 
were demonstrated include the following:

•	 Large population size does not by itself cause bias (Figure  S1; 
Table 3), but large populations require larger sample sizes (n) to 
detect the same number of close kin (R), where E(R) = Y*Pmatch. 
However, the number of pairwise comparisons (Y) increases with 
n2, while the probability of a match declines only according to 
1/NA. Therefore, the fraction of the population that must be sam-
pled to achieve a fixed level of precision is smaller in large popula-
tions, which helps reduce costs for large projects (Figure 5).

•	 Precision of CKMR estimates primarily depends on two factors: 
mean and variance in number of close-kin matches. The relation-
ship between N̂A and R is inverse and non-linear, so as R increases 
the curve becomes flatter (Figure 4). With respect to precision, 
therefore, the experimental design goal should be to make E(R) 
large enough that random sampling error and limited errors in 
pedigree reconstruction have relatively little influence on N̂A. Our 
simulations showed that the assumption of a Poisson variance to 
R is generally reasonable, at least for large populations. But the 
empirical var(R) can be substantially higher than the Poisson ex-
pectation in populations of small-to-moderate size, and this ef-
fect is exacerbated when adults have very unequal probabilities 
of producing offspring. To compensate for this increased variance 
and maintain a target level of precision, it might be necessary to 
boost the sampling effort to increase E(R).

•	 Sibling-based CKMR analyses should exclude same-cohort com-
parisons, whereas Wang's method for estimating effective size is 
restricted to single cohorts. Like Jack Sprat and his wife, the two 
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methods neatly carve up the data into non-overlapping layers. [“Jack 
Sprat could eat no fat. His wife could eat no lean. But, together both, 
they licked the platter clean” (Opie & Opie, 1997, p. 238).] Relative 
precision to estimate NA and Nb from the same experimental design 
depends on three factors: the number of years of samples, annual 
mortality and variance in reproductive success (Figure 6). In longer 
studies, the number of cross-cohort comparisons increases faster 
than those within cohorts, which increases relative precision of 
N̂A; however, this advantage is partially offset by adult mortality, 
which reduces the effective number of cross-cohort comparisons. 
Overdispersed variance in reproductive success (ϕ  >  1) increases 
var(R) and CV(1/N̂A), but has the opposite effect on CV(1/N̂b) 
(Figure 6), because large ϕ reduces Nb and increases the drift signal.

•	 Although ϕ > 1 increases var(R) and reduces precision for CKMR 
(except perhaps in very large populations), it does not bias abun-
dance estimates based on either POPs or cross-cohort siblings 
(Figure 2 and Figure S1).

•	 PPOP is a simple inverse function of 1/NA, leading to unbiased esti-
mates of adult abundance, provided that there are no unmodelled 
covariates that affect both an adult's sampling probability AND its 
ERRO among the sampled offspring. If ERRO and sampling proba-
bility of adults both increase over time (as in Scenario D, Table 3), 
this potential source of bias can be accounted for as illustrated in 
Table S1.

•	 POP-based abundance estimates depend heavily on which indi-
viduals are included in the sample of potential parents. If non-
breeding adults are not sampled, the estimate will apply to the 
number of breeders in a given year (Figure 1a); conversely, if im-
mature individuals are sampled as potential adults, the naive esti-
mate will be skewed away from NA toward overall N (Figure 2).

•	 Cross-cohort sibling comparisons provide information about adult 
abundance in the year the younger sibling was born (Equation 11). 
POP comparisons provide information about adult abundance in 
the year(s) offspring were born. Sampling from multiple cohorts 
thus can provide information about population trend.

•	 It is always necessary to consider adult mortality for sibling-based 
CKMR. This source of random noise increases var(R) and reduces 
precision, even when average mortality rates can be accurately 
estimated (Figure S2).

•	 Random and uncorrelated individual variation in ERRO does not 
bias sibling-based estimates of abundance (Figure  3). However, 
factors that cause positive or negative correlations in ERRO over 
time do affect PMHSP (Equation  11) and must be accounted for 
to avoid bias. Effects of some of these factors, such as intermit-
tent breeding and persistent individual differences, are relatively 
straightforward (Figure 1). Less intuitive is the fact that any sys-
tematic change in ERRO with age also establishes predictable cor-
relations in individual reproductive success over time, and these 
effects can be accounted for as illustrated in Table S2.

Despite its heuristic value, the simplified approach outlined in 
Equation 7 and illustrated by the simulated examples has some im-
portant limitations. For simplicity and tractability, we assumed that:

•	 All close kin were correctly identified;
•	 The single, closed population was constant in size;
•	 Sex ratio was equal, and vital rates were constant over time and 

known without error;
•	 All sampled individuals could be aged accurately;
•	 Sampling was random unless adults were sampled in proportion 

to relative fecundity, which also was known precisely.

In the sibling simulations, these assumptions allowed us to com-
bine all sibling matches across five years of samples to estimate a sin-
gle, constant parameter (NA for CKMR, Nb for Wang's sibship method).

None of the CKMR applications published to date meet all these 
assumptions. More generally, CKMR experimental designs involve 
sampling and testing for POPs and/or siblings from multiple time pe-
riods, across which abundance and vital rates can change, perhaps 
sharply. Incorrectly assuming parameter stationarity can easily lead to 
bias (Skaug, 2001). When values of key covariates are uncertain, the 
estimation process can integrate over plausible ranges, albeit at a cost 
with respect to precision. For all these reasons, the most robust imple-
mentations of CKMR incorporate information from parent–offspring 
pairs and siblings into a single, log-pseudo-likelihood framework, 
within which all demographic parameters can be jointly estimated in a 
way that allows coherent statements about uncertainty.

Another major benefit of using an integrated modelling frame-
work is that many, if not all, key covariates that affect Pmatch can 
also be estimated from the data. For example, with POPs plus ages 
one can estimate age-specific fecundity. Adult survival can be in-
ferred from the distribution of age gaps between siblings (Hillary 
et al., 2018; see also Table S3). Intermittent breeding can be eval-
uated using both POPs and HSPs by examining lag times between 
repeated offspring assignments to the same parent (Bravington, 
Grewe, et  al.,  2016; Thomson et  al.,  2020). To the extent that in-
dependent information about covariates is available from other 
sources, this can be included within the overall estimation process.

6.2 | Effective size

Many of the factors discussed above that complicate CKMR abun-
dance estimates are part of the genetic drift signal and hence create 
no problems for genetic methods that estimate annual Nb. This ap-
plies to age-specific changes in vital rates, skewed sex ratios, skewed 
offspring distributions, and skip breeding. As with CKMR, however, 
estimates of effective size can be very sensitive to non-random 
sampling that leads to positive correlations of sampling probabilities 
among relatives (Goldberg & Waits,  2010; Whiteley et  al.,  2012). 
Although detailed life-history and age-structure information for 
the population as a whole is necessary for demographic estimates 
of Ne or Nb, ageing of individuals is primarily important for sorting 
offspring into single cohorts. Single-sample genetic methods esti-
mate the effective number of breeders that produced the sampled 
offspring (Wang, 2009; Waples, 2005). Researchers should keep in 
mind that, depending on the experimental design and the biology of 
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the target species, this might not represent the entire adult popula-
tion (e.g., under skip breeding in Figure 1).

Practical applications

Meaningful CKMR estimates require (1) genetic data robust enough 
to reliably identify close-kin pairs; and (2) sufficient sampling effort 
to produce the desired level of precision. We have assumed that all 
close-kin matches are correctly identified, which implies that crite-
rion (1) has been met (see Bravington, Skaug, et al., 2016 for a sum-
mary of basic principles of kin identification). In practice, some level 
of uncertainty is associated with both genotyping and kin identifica-
tion, so pedigree-reconstruction models should account for poten-
tial errors and evaluate their consequences.

To date, CKMR has only been applied to a handful of species, 
but these cover a wide range of population sizes and life histories, 

from relatively small populations of salmonids (Rawding et al., 2014; 
Ruzzante et  al.,  2019) and fecundity-limited sharks (Hillary 
et al., 2018) to a large, mobile, highly fecund tuna with 2 million es-
timated adults (Bravington, Grewe, et al., 2016). Most of these ap-
plications fall into one of two categories: at-risk species with high 
conservation value, or high-value fisheries. All published applica-
tions to date are for aquatic species, but CKMR methods can also 
potentially be applied to terrestrial species, as is commonly done 
with genetic methods to estimate effective size.

Even when various factors constrain the types of analyses that 
are feasible, it can be possible to extract valuable information using 
CKMR. Despite the inability to reliably sample adults, juvenile 
samples of the cryptic and critically endangered speartooth shark 
(Glyphis glyphis, Carcharhinidae) have provided important insights 
into connectivity (Feutry et al., 2017). Inability to precisely age the 
school shark added considerable uncertainty to CKMR estimates of 
abundance, which nevertheless were more precise than those from 

TA B L E  4   Summary of major factors that, unless explicitly accounted for, can influence performance of CKMR methods to estimate 
abundance

Factor POPs HSPs

Ageing individuals Necessary if required to separate parents/
offspring, account for changes in fecundity 
with age, or calculate ERRO in the year of 
offspring's birth

Required to sort individuals into cohorts and 
calculate age gaps

Sampling of cohorts Samples from single cohorts can be used for 
semelparous species. Sampling multiple 
cohorts is essential for most iteroparous 
species

Sampling multiple cohorts is essential because 
only cross-cohort comparisons provide 
information about census size

Age-specific fecundity Affects precision; needs to be estimated if 
selectivity varies with age

Affects precision and bias; can be estimated 
independently or from POPs + ages

Adult mortality Not required unless sampling of adults is 
non-lethal

Required to adjust probability a parent produces 
sibs in different years, but can be estimated 
from HSP data

Overdispersed variation in RS (ϕ > 1) Does not affect PPOP but reduces precision Reduces precision. For bias, see below

HSPs from the same cohort Siblings from same cohort estimate Nb, not adult 
N

HSPs from different cohorts

Residual RS uncorrelated across years No bias in N̂A

Persistent individual differences in RS Increases PHSP and will bias N̂A unless accounted 
for

Skip breeding Downward bias in N̂A if skip breeders not sampled. 
With adequate samples, pattern of skip 
breeding can be estimated from the data

Complex effects on PHSP. With adequate samples, 
pattern of skip breeding can be estimated 
from the data

Non-random sampling concerns POPs collected together more often than by 
chance; Probability of sampling an adult 
correlated with its RS

Siblings born in different years collected together 
more often than would occur by chance

Precision In simple scenarios with ϕ ≈ 1, CV(1/N̂A) = 0.15 
requires ~50 POPs, which implies sample sizes 
on the order of √NA individuals

Somewhat more sensitive than POPs to factors 
that inflate variance, but var(RHSP) generally 
converges on R HSP, for large N

Benefits of genomics-scale datasets Scant: performance asymptotes at relatively 
low numbers of genetic markers after POPS 
reliably identified

Once all siblings are correctly identified (which 
generally requires a few thousand SNPs), no 
benefits from adding more markers

“RS”, reproductive success.
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fishery-dependent methods (Simpfendorfer et  al.,  2021; Thomson 
et al., 2020). Among the most important factors that affect the fea-
sibility of CKMR methods are the following (see also Tables 4 and 5):

6.3.1 | Biology

•	 Long lifespan and/or precise ageing facilitates sampling of multi-
ple cohorts

•	 Low adult mortality increases precision of HSPs
•	 For HSPs, it is necessary to be able to either (a) assume that fe-

cundity is constant with age, or (b) use independent sources of 
information, or (c) estimate bx from CKMR data, generally using 
POPs + ages.

•	 In small populations, the lack of independence of close-kin com-
parisons can become an issue.

6.3.2 | Ageing

•	 Minimum requirements: must be able to sort into potential par-
ents and offspring (POPs) or into consecutive cohorts (siblings; so 
age gap is known)

•	 Need actual ages to estimate age-specific fecundity with POPs
•	 Uncertainty in ageing can be modelled but can substantially re-

duce precision

6.3.3 | Sampling

•	 Must be able to sample individuals independent of their kinship, 
or model lack of independence

•	 For POPs, if adults cannot be sampled independently of their 
ERRO, it is necessary to estimate selectivity

6.4 | Future considerations

We expect to see some or all of the following developments in the 
future:

•	 As whole-genome-sequencing of non-model species becomes more 
common, it will become feasible to extend the array of close-kin cate-
gories available to CKMR beyond the one-generation pedigree to in-
clude more distant relationships, including cousins and niblings (nieces 
and nephews).

•	 Conversely, as long-term studies continue, complications posed by 
other relationships that have the same kinship probabilities as half sib-
lings (e.g. grandparent–grandchild) will increase and require effective 
treatments. Current applications often can ignore these complica-
tions because of the species’ biology (esp delayed age at maturity) and 
experimental design.

•	 Single-sample genetic estimators can be used to provide a con-
tinuous time series of annual estimates of Nb, which are generally 

TA B L E  5   Summary of major factors that, unless explicitly accounted for, can influence performance of some genetic methods to estimate 
effective size

Factor Sibship method LD method

Ageing individuals Required to sort individuals into cohorts to 
estimate Nb or to estimate Ne from mixed-
age samples

Required to sort individuals into cohorts to 
estimate Nb; not required to estimate Ne 
from mixed-age samples

Sampling of cohorts A single-cohort sample provides a point 
estimate of Nb. Multiple such samples 
provide a temporal series of estimates

A single-cohort sample provides a point 
estimate of Nb. Multiple such samples 
provide a temporal series of estimates. 
Mixed-age samples can estimate Ne

Changes in fecundity or mortality with age; 
skewed sex ratio; overdispersed variance 
in RS (ϕ > 1)

No bias; these are part of the signal of reduced 
Ne and Nb

No bias; these are part of the signal of 
reduced Ne and Nb

Skip breeding and persistent individual 
differences in RS

No bias to single-cohort samples estimating Nb No bias to estimates of Nb or Ne, but this 
affects the ratio Nb/Ne and influences 
the bias adjustments to account for 
age-structure

Non-random sampling issues Estimate is downwardly biased if siblings are 
collected together more often than would 
occur by chance

Estimate is downwardly biased if relatives are 
collected together more often than would 
occur by chance

Precision For large populations, sample sizes on the 
order of √Ne individuals

Precision jointly determined by samples of 
individuals and loci

Benefits of genomics-scale datasets Once all siblings are correctly identified (which 
generally requires a few thousand SNPs), 
no benefits from adding more markers

With more than about 500–2000 SNPs, 
precision of LD method will meet or 
exceed maximum precision possible with 
sibship method

Changes in N and/or Ne Estimate applies to parental generation 
regardless of prior N or Ne

Some bias toward previous Ne for 3–5 
generations

“RS”, reproductive success.
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done independently each year (Ruzzante et  al.,  2016; Waples, 
Grewe, et  al.,  2018; Waples, Scribner, et  al.,  2018; Whitely 
et al., 2015). One could develop an analytical framework analo-
gous to that used by CKMR that jointly considers multiple years 
of data to estimate temporal trajectories of Nb and other popu-
lation parameters, but we are not aware of any attempts to do 
that. Furthermore, because CKMR and the two single-sample 
estimators of effective size use the same data, it should be possi-
ble to incorporate all of the estimation of annual abundance, Nb, 
and related parameters into a single pseudo-likelihood framework 
that would help shed light on the important ratio of effective size 
to census size. An initial attempt to combine CKMR and effective 
size information, based only on POP data for microsatellites used 
in the CKMR study of southern bluefin tuna, showed that the 
range of Ne/N ratios that were most consistent with the combined 
data was about 0.1 to 0.5 (Figure 7). This ruled out any substantial 
effect of sweepstakes reproductive success for southern bluefin 
tuna, even though the species’ longevity and high fecundity are 
similar to several marine species for which “tiny” estimates of 
Ne/N have been reported (Hedgecock & Pudovkin, 2011).

•	 Tightly linked markers on the same chromosome provide insights 
into Ne in the more distant past. If detailed information about ge-
nomic structure is available, it can be leveraged to provide a tempo-
ral series of N̂e estimates back in time. Applications of this approach 
include humans (Tenesa et al., 2007), red drum (Sciaenops ocellatus, 
Sciaenidae; Hollenbeck et  al.,  2016) and Atlantic salmon (Salmo 
salar, Salmonidae; Lehnert et  al.,  2019), and a recently developed 

modification (Santiago et al., 2020) appears to considerably improve 
performance. Apart from using more distant kin to extend pedigree 
inference back one or a few more generations, there does not ap-
pear to be any comparable potential for CKMR to provide insights 
into historical abundance.

Finally, an aspirational goal would be to integrate estimation of 
abundance with CKMR and estimation of generational effective pop-
ulation size, Ne. This should uncover some interesting parallels: un-
like annual Nb but similar to sib-based CKMR, Ne per generation is 
sensitive to correlations in individual reproductive success over time. 
Hill’s (1972) model for Ne when generations overlap is robust to ran-
dom demographic variation if N is not too small (Engen et al., 2005; 
Waples et al., 2011). However, allowing for environmental stochastic-
ity requires a different formulation (Engen et al., 2005), and even this 
becomes problematical under strong density dependence, when vital 
rates vary over time and generation length is not well defined (Myhre 
et al., 2016). Successfully integrating generational Ne and CKMR into 
a single estimation framework thus remains a challenging prospect.
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